Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 84, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459543

RESUMO

In the present study, Aeromonas hydrophila was isolated from Tilapia zillii and Mugil cephalus samples collected during different seasons from various Suez Canal areas in Egypt. The prevalence of A. hydrophila, virulence genes, and antibiotic resistance profile of the isolates to the commonly used antibiotics in aquaculture were investigated to identify multiple drug resistance (MDR) and extensive drug-resistant (XDR) strains. In addition, a pathogenicity test was conducted using A. hydrophila, which was isolated and selected based on the prevalence of virulence and resistance genes, and morbidity of natural infected fish. The results revealed that A. hydrophila was isolated from 38 of the 120 collected fish samples (31.6%) and confirmed phenotypically and biochemically. Several virulence genes were detected in retrieved A. hydrophila isolates, including aerolysin aerA (57.9%), ser (28.9%), alt (26.3%), ast (13.1%), act (7.9%), hlyA (7.9%), and nuc (18.4%). Detection of antibiotic-resistant genes revealed that all isolates were positive for blapse1 (100%), blaSHV (42.1%), tetA (60.5%), and sul1 (42.1%). 63.1% of recovered isolates were considered MDR, while 28.9% of recovered isolates were considered XDR. Some isolates harbor both virulence and MDR genes; the highest percentage carried 11, followed by isolates harboring 9 virulence and resistance genes. It could be concluded that the high prevalence of A. hydrophila in aquaculture species and their diverse antibiotic resistance and virulence genes suggest the high risk of Aeromonas infection and could have important implications for aquaculture and public health.


Assuntos
Aeromonas hydrophila , Tilápia , Animais , Aeromonas hydrophila/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos
2.
Aquac Int ; 31(3): 1253-1267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36439703

RESUMO

This study aimed to develop and evaluate live and inactivated vaccines to Aeromonas veronii pathogenicity in Nile tilapia. Therefore, five well-identified Aeromonas veronii isolates, including A (HY1), A (HY2), A (HY3), A (HY4), and A (HY6) isolated from diseased Nile tilapia (Oreochromis niloticus), were used for vaccine preparation. Virulence genes detected by a polymerase chain reaction (PCR) and lethal dose determination were conducted. Nile tilapia, each with a body weight of 25 ± 0.5 g were divided into six experimental groups (each of 20): T1 group (control), fish were injected with saline as a negative control, T2 group (formalin-killed vaccine) for the A (HY2) strain, T3 group ( formalized killed vaccine) for the A (HY4), T4 group (autoclaved vaccine) for the A (HY2), T5 group (autoclaved vaccine) for A (HY4), and T6 (live vaccine) for A (HY1), triplicate. At the end of the immunization period, all groups were challenged by A. veronii, A (HY2). Blood samples were drawn 21 days post-immunization and 3 days after the challenge test for antibody titer assay. The results showed that the pathogenicity of strains A (HY2) and A (HY4) was the strongest, as the lethality rates (LR) were 100% and 90%, respectively, whereas the pathogenicity was moderate for strains A (HY3) and A (HY6) (LR 60% for each). A (AY1) was the weakest strain as no dead fish was found for this strain. The presence of alt, act, aerolysin, lipase, and fla genes as the main cause of the pathogenesis. The best protective efficacy was obtained from the live vaccine, A (HY1) with a protective rate of about 94.12% (relative percentage of survival, RPS), compared to autoclaved killed vaccines and formalin-killed vaccines. Based on immunoglobulin estimation (IgM) and RPS%, our data concluded that A (HY1) live vaccine had the best vaccine prophylactic effect against the highly pathogenic strain A(HY2).

3.
Fish Shellfish Immunol ; 119: 76-83, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601138

RESUMO

Striped catfish (Pangasianodon hypophthalmus) is one of the important fish species in the world, which is widely cultured in several countries worldwide including Egypt. Aeromonas hydrophila infection showed a high prevalence in the farmed striped catfish negatively affecting its production causing economic loss. Therefore, the finding of functional feed supplements with antimicrobial activity is urgently needed. The use of marine seaweeds as feed supplements has produced satisfactory results as antibacterial agents. Accordingly, the present study was designed to evaluate the dietary effects of seaweeds mixture (Ulva lactuca, Jania rubens, and Pterocladia capillacea) extract (SME) on the growth performance, haemato-chemical parameters, antioxidant capacity, immune indices, and resistance of striped catfish fry against A. hydrophila infection. Four isonitrogenous (30% crude protein) diets were prepared to contain 0.0% (control), 1%, 2%, and 3% SME and were fed to striped catfish fry (1.7 ± 0.1 g) up to apparent satiety three times a day for 60 days. After the feeding trial, fish of each treatment were intraperitoneally injected with a virulent A. hydrophila strain and the relative percentage of survival (RPS) was recorded. The growth-stimulating activity of dietary SME was observed especially at 2% and 3% SME treatments. Similarly, haematological parameters (red blood cells, haemoglobin, haematocrit, and white blood cells) and serum protein profile (total protein, albumin, and globulin) were significantly (P < 0.05) improved, meanwhile serum alanine and aspartate aminotransferases were significantly (P < 0.05) decreased in fish fed with 2 and 3% SME diets. Serum creatinine and uric acid levels revealed no significant (P > 0.05) differences among the experimental groups. Hepatic malondialdehyde and serum nitrous acid levels were significantly decreased; meanwhile hepatic superoxide dismutase, catalase, and glutathione peroxidase levels were significantly increased in all SME-treated groups than the control one. Also, SME supplementations significantly increased the serum lysozyme, total immunoglobulin, and complement C3 activities with highest values at 2% and 3% SME treatments. Interestingly, after bacterial challenge, fish fed SME-supplemented diet were more resistant with the lowest fish mortality (15%) at the 3% SME diet, which exhibit the highest RPS (81.9%). Meanwhile the control group showed highest mortality (85%). According to the regression fitting curve, the current study recommends using the dietary SME with optimum levels of 2.25-2.5% to improve the growth performance, welfare status, and resistance of striped catfish fry against A. hydrophila infection.


Assuntos
Peixes-Gato , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Alga Marinha , Aeromonas hydrophila , Ração Animal/análise , Animais , Antioxidantes , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Infecções por Bactérias Gram-Negativas/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA